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Young’s modulus–porosity relations: an analysis
based on a minimum contact area model

A. K. MUKHOPADHYAY, K. K. PHANI
Composite division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India

The Young’s modulus—porosity relation of porous ceramic materials has been analysed

based on a minimum solid area of contact model. The minimum solid area of contact

developed during sintering of an assembly of monosized spheres stacked in simple cubic

packing is calculated by approximating the neck area by two sine-wave functions. The first

function represents the shape of a sphere and the second function signifies the shape of the

neck between neighbouring spheres. The model shows excellent agreement with 12 sets of

relative Young’s modulus, E/Eo, versus pore volume fraction, P, data from literature on five

different polycrystalline ceramic oxides, namely Lu2O3, Sm2O3, Yb2O3, Al2O3 and ThO2,

whose porosities are reasonably represented by such idealized packing.
1. Introduction
In general, three approaches have been adopted to
deal with mechanical property—porosity relations.
These are: (i) mechanical strain analysis of bodies with
generalized structure, (ii) premises of pore shape and
resulting stress concentration effects (SCE), and (iii)
consideration of actual geometrical load-bearing area.
Recently, the last approach has been expanded by
Rice in a series of papers [1—4] suggesting that most
physical properties, including mechanical properties
(e.g. elastic moduli, strength, etc.), are determined by
the minimum contact area (MCA) fraction normal to
the flux or stress. However, estimation of MCA, a diffi-
cult task to accomplish, will depend primarily on the
initial geometry of particles in the compact and their
packing pattern.

In a recent paper [5] a model has been proposed
to describe the variation of electrical conductivity
with densification during sintering of an as-pressed,
porous ceramic green ware. Assuming a monosize
particle diameter distribution, the model predicts the
change in relative density, q/q

5)
, with progressive

sintering. The gradual thickening of the neck area
between neighbouring particles for a three-dimen-
sional cubic array of equivalent spheres is calculated
by approximating the neck area by two sine-wave
functions.

Thus, the purpose of the present work is to use the
same model [5] for developing a relationship between
the normalized minimum contact area (NMCA) frac-
tion of a solid and Young’s modulus of porous cera-
mics. The applicability of the proposed relationship
has been evaluated for 12 experimental relative
Young’s modulus, E/E

0
, versus pore volume fraction,

P, data sets from the literature on five different ce-
ramic oxides, namely Lu

2
O

3
, Sm

2
O

3
, Yb

2
O

3
, Al

2
O

3
and ThO

2
. The selection of these data sets has been

made on the basis that analyses by earlier investiga-
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tors indicate that the behaviour of these materials
closely resembles the cubic packing of the initial pow-
der particles [6, 7].

2. Theory
The model is based on one given by Misuzaki et al.
[5]. It considers the gradual change in the minimum
solid area of contact between neighbouring grains
with the progress of densification for an idealized
simple cubic arrangement of equivalent spheres. To
simplify the situation, a physical picture of sintering
a simple cubic array of equivalent spheres has been
considered. During sintering each sphere is welded to
six nearest neighbours. This causes shrinkage and,
hence, densification along the three mutually perpen-
dicular axes. This makes the three-dimensional array
turn parallel forming rectangular parallelopipeds,
each of which contains a uniaxial string of spheres.
The stages of shrinkage leading to further densifica-
tion continue until each string of spheres becomes
a compact square bar. The aggregation of these square
bars generates the sintered compact. Now as sugges-
ted by Rice [4], the elastic—mechanical properties
shall be determined basically by the relative density
and the availability of a minimum solid area of contact
at the neck between the particles along the direction of
the externally applied stress. Therefore, consideration
of only one string of spheres along the stress axis
suffices. It is assumed that, before sintering, the cross-
section of the string along the prospective stress axis is
a series of circles with diameters a

*
. On completion of

sintering, the string turns to a rod of diameter a
&

((a
*
). During sintering, the string can be expressed

by the rotation of a wave function, f (x), with a period
2a [5]

f (x)"f (x#2na) (1)
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It can be asserted that shrinkage of the string both
along and perpendicular to the x-axis can take place
during sintering. Therefore, it follows that with pro-
gressive sintering parameter a becomes smaller, and so
the maximum of f (x), say a

5
, decreases from its initial

value, a
*
, to the final value, a

&
; consequent to develop-

ment of densification during sintering in the porous
ceramic green body. Mizusaki et al. [5] have shown
from this premise that the relative density, q/q

5)
, can

be expressed as

(q/q
5)

)"P
2a

0

[ f (x)/a
5
]2dx (2)

Because a
5
is the maximum of f (x), it follows that

!1)f (x)/a
5
)1 (3)

The implication of Equation 3 is that the estimation of
q/q

5)
requires only a change of relative form of f (x)

and not the time rate of change of a
5
or a be con-

sidered. The change in shape of the neck area between
two particles during the course of sintering has been
modelled, as shown in Fig. 1, by a combination of the
following two sine-wave functions [5]. For 0)x)c.

f (x)"(a
5
) M (1#r

0
)/2#[(1!r

0
)/2] [sin(px/c)]N

(4)

and for c)x)1

f (x)"(a
5
) M (1#r

0
)/2#[(1!r

0
)/2]

]sin[p(x#1!2c)/(1!c)]N (5)

The first expression above, Equation 4, represents the
shape of a sphere. Equation 5 signifies the shape of the
neck between neighbouring spheres. The factor
r
0

stands for the ratio of the minimum diameter at the
neck to the maximum diameter of the rotating body.
Based on these assumptions it has been shown that the
expression for relative density is [5]

q/q
5)
"4c P

1@4

0

M (1#r
0
)/2#[(1!r

0
)/2] sin2pyN2dy

#4(1!c) P
0

~1@4

M(1#r
0
)/2

#[(1!r
0
)/2] sin2pzN2dz (6)

where the quantities r
0

and c are explained in Fig. 1
and y and z are dummy variables. Now, substituting
a"(1#r

0
)/2 and b"(1!r

0
)/2 and carrying out the

integration analytically, rather than numerically as
done in [5], we obtain from Equation 6

q/q
5)
"[a2!(4ab/p)#(b2/2)#(8abc/p)] (7)

Therefore, the pore volume fraction, P, is given by

P"1!(q/q
5)
)"M1![a2!(4ab/p)

#(b2/2)#(8abc/p)]N (8)

Now, it follows from Fig. 1c that the minimum contact
area (MCA) is at x"(1#c)/2, i.e. at the mid-point of
70
Figure 1 Sine-wave functions for the approximations of a partially
deformed sphere and the developing neck area between two neigh-
bouring spheres during sintering of simple cubic packed monosized
spheres, along with the definitions of the parameters c and r

0
,

following the model of Misuzaki et al. [5].

the neck between two neighbouring particles and,
hence, from Equation 5 the diameter, f (x), at
x"(1#c)/2 is given by

f (x)"a
5
r
0

(9)

The corresponding MCA becomes

MCA"(p/4)a2
5
r2
0

(10)

Equation 10 shows that the MCA at any point of
sintering is reduced by a factor r2

0
from its maximum

value, (p/4)a2
5
, at r

0
"1, i.e. in the fully sintered condi-

tion. Therefore, the ratio of the normalized MCA
(NMCA) fraction to the pore volume fraction, P, is
given by the following expression

NMCA/P"[(r2
0
)]/M1![a2!(4ab/p)

#(b2/2)#(8abc/p)]N (11)

Equation 11 forms the basis for prediction of the
NMCA fraction of a solid as a function of pore volume
fraction, P, with c as the adjustable parameter.

3. Results
The materials investigated were Lu

2
O

3
, Yb

2
O

3
,

Sm
2
O

3
, Al

2
O

3
and ThO

2
[7—14]. The values of E/E

0
for different given porosities were calculated from the
reported experimental Young’s modulus, E, data, with
the value of E

0
, the Young’s modulus of zero porosity

material, suggested in the same references.
Fig. 2 shows the variation of E/E

0
with pore volume

fraction, P, for three different data sets on Lu
2
O

3
[8],

Sm
2
O

3
[9] and Yb

2
O

3
[10]. A computer program

was also run to calculate the variation of the nor-
malized minimum contact area (NMCA) fraction with
pore volume fraction, P, from Equation 11, with differ-
ent values of the adjustable parameter, c, which pro-
vides the best fit to the trend in the aforementioned
data of E/E

0
versus P. Thus, the variations of the

NMCA fractions of the solids with P (for c"0.64, 0.58
and 0.52 for Lu

2
O

3
, Sm

2
O

3
and Yb

2
O

3
, respectively)

are also plotted in the same Fig. 2. The excellent match
between the predicted trend from the proposed NMCA



Figure 2 Variation of relative Young’s modulus, E/E
0
, and nor-

malized minimum contact area (NMCA) fraction of solid with the
pore volume fraction, P, of Lu

2
O

3
(j), Sm

2
O

3
(@) and Yb

2
O

3
()).

The solid lines represent the best fits to the experimental data from
the literature [8—10] according to the proposed relationship (Equa-
tion 11) between the NMCA fraction of the solid and P.

fraction concept (Equation 11) and the experimental
data speaks for itself. The present observation
also agrees with earlier suggestions, that the nature of
packing for the initial powders was most likely cubic
in these materials [6].

Fig. 3 presents the results of a similar analysis to
that mentioned above for six sets of data on alumina
taken from the literature [7, 12, 13]. Similar results for
three sets of data on thoria [14] are presented in Fig. 4.
The match between the trend predicted from the pro-
posed relationship (Equation 11) and the experimental
data is excellent in the case of thoria (c"0.65 and
0.82, Fig. 4). Note that all the data sets for alumina fall
within the predicted limits of c"0.55—0.75, Fig. 3. In
general, for alumina also the match between the trends
predicted from the proposed NMCA fraction concept
and the experimental data is quite good except at very
low porosity, e.g. for the data of Green et al. [13],
where the experimental data slightly deviate from the
predicted trends. This may be due to two factors: (i)
uncertainties in the experimental data at such high
porosities (P'0.40), or (ii) inherent limitations in the
model for the assumptions of cubic packing of mono-
sized particles. However, the excellent match between
the predicted trend and the experimental data in most
of the Al

2
O

3
ceramics considered here strongly sug-

gests the possible presence of cubic packing in the
initial as-pressed powder compact, as was also sugges-
ted earlier by Wang [7].

The pore volume fraction, P, at which the Young’s
modulus becomes zero is termed the critical pore vol-
ume fraction, P

#3
[6]. The results of the present work

predict P
#3

as 0.54 for Lu
2
O

3
, 0.58 for Sm

2
O

3
, 0.62 for

Yb
2
O

3
(i.e. an average of 0.58 for the rare earth oxides,

Fig. 2), 0.46 and 0.60 (i.e. an average value of 0.53) for
Al

2
O

3
(Fig. 3), and 0.43 and 0.52 (i.e. an average value

of 0.48) for ThO
2
(Fig. 4). The basis of the prediction is

the porosity at which the NMCA fraction of the solid
becomes zero for the respective c values which give the
best fit to the corresponding experimental relative
Young’s modulus versus pore volume fraction
Figure 3 Variation of relative Young’s modulus, E/E
0
, and nor-

malized minimum contact area (NMCA) fraction of solid with the
pore volume fraction, P, of Al

2
O

3
. The solid lines represent the best

fits to the experimental data from the literature [7 (j), 12 (@), 13 (n,
))] according to the proposed relationship (Equation 11) between
the NMCA fraction of the solid and P.

Figure 4 Variation of relative Young’s modulus, E/E
0
, and nor-

malized minimum contact area (NMCA) fraction of solid with the
pore volume fraction, P, of ThO

2
[(j) group I, (@) group II, ())

group III]. The solid lines represent best fits to the experimental
data from the literature [14] according to the proposed relationship
(Equation 11) between the NMCA fraction of the solid and P.

data. These predicted P
#3

values lie in the range
0.43)P

#3
)0.62, which tallies with the range

0.40)P
#3
)0.53 as observed by Lam et al. [12], as

well as with the range 0.40)P)0.60, typically found
in practice, for as-pressed ceramic green ware [5].

The present results suggest that the proposed
model, based on the minimum contact area concept
suggested initially by Knudsen [15] and expanded by
Rice [1—4], can predict the experimentally observed
trend of variation in relative Young’s modulus with
pore volume fraction quite accurately. The inherent
limitation of the model lies in the simplifying assump-
tion that it considers the cubic packing sintering of
monosized spheres. In practice, however, the particle
shape may not be exactly spherical and the size distri-
bution may not be monomodal. Moreover, the model
does not consider the introduction of stress concentra-
tion effects due to reduction in neck area between
neighbouring particles during the course of sintering.
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In spite of these inherent limitations the model
predicts the experimental data trend for several ce-
ramic oxides quite well, thus confirming the observa-
tions made by Rice [1]: ‘‘neither basic concepts nor
broad polycrystalline experience show any significant
dependence of elastic properties on microstructural
stress concentration per se’’.

4. Conclusions
A new relationship is proposed between the
normalized minimum contact area (NMCA) fraction
of a solid and the corresponding pore volume
fraction, P, from considerations of modelling
the change in neck area between two particles
during sintering of an idealized assembly of mono-
sized spheres stacked in simple cubic packing.
The trends of variation in the NMCA fraction with
P as predicted by the present model bear excellent
agreement with 12 sets of experimental data from the
literature on relative Young’s modulus, E/E

0
, versus

pore volume fraction, P, of five different polycrystal-
line ceramic oxides, namely Lu

2
O

3
, Sm

2
O

3
, Yb

2
O

3
,

Al
2
O

3
and ThO

2
.
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